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Abstract

A two-sublattice model has been applied to a canted antiferromagnet including both Dzyaloshinsky—Moria interaction and double-
exchange. Static magnetization and frequencies of the antiferromagnetic resonances (AFMR) were calculated for static magnetic fields
along the principal crystallographic axes of an orthorhombic crystal. The experimental data for Lag¢sSrg9sMnOs, which include
magnetization, positions and excitation conditions of the AFMR modes can be well accounted for using the model calculations.
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1. Introduction

Physical properties of doped manganites remain the
subject of intensive investigations. Initiated by the
observation of colossal magnetoresistance [1] at the me-
tal-to-insulator transition, the research efforts have been
extended to the properties of different phases ranging
from a ferromagnetic (FM) metal to an antiferromagnetic
(AFM) insulator.

Among the topics still under debates is the low-doping
part of the complex phase diagram of manganites [2].
The parent compounds, like LaMnO3; or CaMnOj reveal
antiferromagnetically ordered magnetic structure at low
temperatures. Sr or Ca-doped LaMnO; with doping
levels slightly larger than ~10% becomes ferromagnetic
insulators. Two possible scenarios can be imagined for
the intermediate doping region between FM and AFM
configurations. The first one is strongly favored theo-
retically [3] and assumes a phase separation into pure
ferro- and antiferromagnetic regions with a doping-
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dependent volume ratio. The second scenario is based on
a canted magnetic structure and corresponds to classical
description of a doped antiferromagnet. The latter model
was applied to the manganites already by de Gennes [4].
A recent discussion of this problem can be found in [5].

Magnetic resonances depend upon the local configu-
ration of the magnetic moments and therefore provide
important microscopic information about the magnetic
structure on the atomic length scale. In this paper we
analyze the consequences of the canted magnetic struc-
ture for the magnetic field-dependence of the antiferro-
magnetic resonances. We include new terms in the free
energy in order to take into account the latest develop-
ments in the physics of manganites. On the basis of the
presented model additional properties of the system can
be calculated like field-dependent magnetization along
different crystallographic directions.

2. Model of a canted structure
The model of a canted structure assumes the existence

of two magnetic sublattices (A_/? L ]\712) which are not ex-
actly antiparallel, but oriented under an angle 0 < 180°.
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As a working example, lightly Sr- or Ca-doped ortho-
rhombic LaMnOj; (space group Pbnm) can be consid-
ered. A canted A-type antiferromagnetic structure has
been found in these compounds by neutron scattering
[6]. A model similar to presented here has been applied
to the manganites by de Gennes [4]. To account for the
experimental data on manganites, an anisotropic con-
tribution [7], as well as the contribution of the Dzyalo-
shinsky—Moria (DM) exchange [7,8] to the free energy
were taken into account. With these additional terms the
free energy of the system at zero temperature can be
written as:

(0 ®3)

T Sl 1
F(i, 1) = 5 A = Blii| + 5 Ki(m + 1) + 5 K(m2 + I2)
— dym.1, — dymy I, — MyiiH . (1)
—_—
4) ©)

In Eq. (1), 7 and I are dimensionless ferro- and anti-
ferromagnetic vectors, which are defined as m = (M +
M,)/2My, I = (M| — M>)/2M, and satisfy the conditions

ml=0, @+0>=1 (2)

since the sublattices M, and M, are assumed to be sat-

urated at 7 = 0, and My = |M,| = |M,| is the saturation

magnetization of the sublattices. Eq. (1) can be divided
into five main contributions (indicated in Eq. (1)), which
will be described below.

o Antiferromagnetic exchange (1). It accounts for the
antiferromagnetic coupling of the ferromagnetic
planes due to the super-exchange interaction J,»j§i§ .
The exchange constant A is given by the super-ex-
change integral along the c-axis Jj: 4 = —2NzJHSZ,
where N is the number of the magnetic ions and
z =2 is the number of the nearest Mn neighbors
along c.

o Double exchange (2). The double exchange [9] is a
competing interaction to the (1) and causes a FM
coupling between the Mn ions due to strong depen-
dence of the transfer energy f; of e, electrons(holes)
on a respective orientation 0;; of neighboring Mn
spins §,’ and gji tij = l“|1LCOS(9,‘j/2) = tH,L | S:i — §j |
/28, where ¢, are the transfer integrals along and
perpendicular to the c-axis, respectively. In the two-
sublattice approximation the angle-dependent part
of this interaction is reduced to the second term of
Eq. (1) with a constant B = xNzt)/2, where x is the
concentration of the holes, i.e., Mn**-ions in doped
manganite.

o Anisotropy energy (3) and DM-interaction (4). The
anisotropic terms result from the single-ion anisot-
ropy determined by the crystal field (CF) acting on
Mn** ions DSZ + E(SZ — Sy), where S, Sy, Sy are
the spin components in the local axes of Mn** related
to the Mn-O bonds of the MnOg octahedra, and

from the antisymmetric Dzyaloshinsky—Moriya ex-
change X;;d;[S;S;]. The contributions of these inter-
actions to K. and d;, are determined both by the
parameters of the CF and DM Hamiltonians as well
as an orientation of their local axes with respect to
the crystallographic ones, implying a dependence on
the crystal distortions [10,11]. These interactions lead
to K. > 0 and a stabilization of the A,F, configura-
tion in lightly doped LaMnOs3. Here A F. indicates

AFM-order alongy (crystallographic b-axis) and

FM-order along z (crystallographic c-axis). In gen-

eral, a contribution to a weak ferromagnetic moment

is determined both by the DM-exchange (d_ = d,;

—dy #0) and the single-ion anisotropy (d. = d;+

dy #0).

o External magnetic field (5). The contribution of the
external field to the free energy is determined by the
corresponding g-factors of Mn3* and Mn** ions,
which are, in general, slightly anisotropic. Neglecting
this anisotropy and assuming g =2, the correspond-
ing Zeeman interaction can be expressed via the sat-
uration magnetization, which in a case of doped
manganites is given by: My = (1 —x)My(Mn*")+
xMo(Mn*") = 4up - (1 —x) + 3z - x.

The equilibrium arrangement of the sublattices can be
obtained minimizing the free energy given by Eq. (1):
&~ a_;; = 0. The frequencies of the resonance modes are
calculaated in the limit of small perturbations from the
equations of motion

(3)

where y = 2uy /% is the gyromagnetic ratio.

In the limit of small perturbations (7 = g+
A and [ = Iy + Al) the linearized equations of motion
take the form:

e A = [ x B + [ x AF, ] + [ x F9] + Iy x AF)]
{ M AT = [ x F] + [0 x A + [AT < S| + [Ty x AF, |
(4)

where the following definitions have been applied:

. oOF ., OF
FO=_—_ 0 =
" om0’ Y
AF, = Ain fZF_,O + Al _,aF_.O + AH oF —, and
om0 omoo1 OmOdH®
. oF - OF . OF
T el T arel® T ol

The superscript “0” indicates the static equilibrium
value of the variables. Solving Eq. (4) the magnetic
field dependence of the AFMR (antiferromagnetic
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resonance) modes can be obtained. In the following the
solution will be presented for the external magnetic field
along the main crystallographic directions.

2.1. External magnetic field along the c-axis

In the geometry H||c the solution for the AFMR-
modes takes the most simple form. In this case the
equilibrium coordinates of the magnetlc vectors contain
one component only: g = (0,0, m°); o= (0, lg,O). To
simplify the expressions, we omit the index “0” and
denote m and / to be the equilibrium values of the ferro-
and antiferromagnetic vectors (see Fig. 1).

Separation of Eq. (4) into scalar equations for the
spatial coordinates (x, y, z) leads to six scalar equations.
However, for a geometry H||c these equations can be
separated into two independent groups, which therefore
represent two independent antiferromagnetic modes.
The first group involves the components (Am,, Am,, and
Al,) and the corresponding mode can be termed a fer-
romagnetic-like mode, the F-mode:

% Ani, = AmyFy) . — ALF}, — m.AF, , + [,AF,
M° Anm, = fAme;” +m AF,M, (5)
MOAZ = Am,F?, — L,AF,..

The second group of the linearized equations of motion
includes (Am;, Al,, and Al,) and describes the behavior
of the AF-mode:

Mo Am, = ALF) — L,AF,,
YAl = —Am.F) — mAF, +ALF), + LAF,.,  (6)
U Aj, = mAF;, — ALFD.

From the normalization conditions for the vectors [
and m (Eq. (2)) the following relations follow:
Aly = —Am_7= and Al = Amyl Therefore, each set of
equations for F- and AF-modes contains two indepen-
dent equations, only. Searching for the harmonic
(Am, Al o e7") solution the following equations for the
resonance frequencies are obtained:

F-mode:

y(0)

Fig. 1. Geometry of the magnetic sublattices for external field parallel
to the c-axis.

iw K. (m* — lf,)/mz —MyH,—2d.1,|
mz(KX —Kz) +d1 Z})—FM()HZ iw o

AF-mode:

iw —(dvm. +K.l,)

L(A +K.) +dim.(3 +m? [ 2) i =0,

(8)

where d, =d|, +d,. Here we used the equality
Fp =" Fy O which follows from the equilibrium
condltlons g

We further recall that m.=cosj and
l, = s1n , where the angle between the sublattlce mag-
netlzatlons had been obtained from the minimum of the
free energy:

0 B"‘M()H +d1 Sln—
cos= = . 9)
2 A+ K. +d cot5

Now the solution for the frequencies of both AFMR
modes can be written explicitly:

M2 0 0
—L wp = [MOHZ cos§+d+ sinf — K, cos 0] - {dl sinz

7 ]
+MyH, + (K. — K_) cos g} / cosg (10)
M; 0 0 .0
e LAy = {K (Sin 5+ dy cos 2} {(A +K.) sin
0 0
2200 . e
+(3+cot 2) dlcosz] (11)

Two modes can be separated into oscillations of the
ferro- and antiferromagnetic vectors and are shown in
Fig. 2. The AFMR-modes can therefore be termed
quasi-ferromagnetic (F-mode) and quasi-antiferromag-
netic (AF-mode) resonances. The interaction of the
modes with the electromagnetic field is realized via the
term (Mom - H) in the free energy, Eq. (1). The oscilla-
tions in the F-mode involve the following components
of the magnetic vectors: m,, m,, and 1. (Fig. 2, left pa-
nel). This mode can therefore be excited by the elec-
tromagnetic wave with the ac-magnetic field (4) having a
nonzero component in the ab-plane. By analogy, the
AF-mode (Fig. 2, right panel), which involves (m,,1,,15)
is excited for (h) parallel to the c-axis [12].

2.2. External magnetic field along the a-axis

For external magnetic fields along the a-axis, the
canted spin-configuration is additionally tilted in the
x-direction as shown in Fig. 3. The equilibrium coor-
dinates of the magnetic vectors read now:
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Fig. 2. Antiferromagnetic modes of a canted antiferromagnet. The
magnetic moments of the two sublattices M, and M, correspond to
adjacent ab-layers in lightly doped LaMnOs and are brought to the
same point for simplicity. m = (M, + M,)/2My, ferromagnetic mo-
ment; 1= (}\71 1 —Mz)/2Mo, antiferromagnetic moment. The oscilla-
tions corresponding to two possible modes are also shown (ellipses and
double arrows). The quasi-ferromagnetic mode (F) is excited by it||a
and A||b, the quasi-antiferromagnetic mode (AF) by &||c.

z(c)

e ¢ / v(o)

Fig. 3. Orientation of the magnetic sublattices in the external field
parallel to the g-axis.

0 0 .
m = (m;,0,m,) = (cosz cos q),O,cosE sin (p);

1=(0,1,0)= <0,sin§,0).

The equilibrium values of the angle 6 and ¢ are ob-
tained in analogy to the previous subsection solving the
equations:

0 : . .0
(K. — K,) cosE cos @ sin ¢ + MyH sin ¢ — d, smE Ccos @
=0, and (12)

1 . .
-3 [4 + K, cos ¢* + K. sin ¢*] sin 0 + [B 4+ MyH cos ¢]

.0 .
><s1n§—d1 singpcos = 0. (13)

Two antiferromagnetic modes cannot be separated in
this case and are therefore coupled. A procedure, similar
to that of the previous section, leads finally to the fol-
lowing equation for the resonance frequencies:

iw 0 D13 D14

0 1w D23 D24
D31 D32 1w 0
D41 D42 0 1w

=0. (14)

Here the elements of the matrix in Eq. (14) are given by

12 _ m2
D13 = _Kz - ‘£ — 2d+ly7
m;
myl,
D14 = _Kz - d+mx7
myl,,
Dy = MyH, — K.m, — dy )
m,
dim?* + dym?
D24 - _lny - 1mz * 2 )
m,
> — m?
D3]:(Kx_Kz)mz+dl - l xv
Ds» = (K, — K.ym, — MoH, — dy 2%
¥
M B
D4l = —m— |:(A +KZ——3>mZ _Zd]ly:|,
[, m

m> m?
Dy = ly(A +Kz—Bm—'§) +d1mz<3+l—zz>.
y

Eq. (14) leads to two possible resonance frequencies:

M. 2
(7"@‘2) —E++E>+ 0, with (15)

1
E= 3 (D13D31 + Dy3D3y + Dy Doy + DiyDyy),  and

O = DgD31D23Dyy + Dy D13D2u D3,
— Dy Dy4D13D31 — D41 D14D3;Dy3.

2.3. External magnetic field along the b-axis

The external magnetic field parallel to the b-axis leads
to the rotation of the magnetic moments in the be-plane
by an angle ¢ (Fig. 4). In high magnetic fields a spin—
flop transition takes place within this geometry, i.e., the
magnetic moments rotate by ¢ = n/2 from the field-free
position. In this case the ferromagnetic vector i is ori-
ented along the b-axis after the transition.

The equilibrium position of the magnetic vectors
iy = (0 my,m.) = (0 cosgsin¢,cosicos ); Iy= 0,1,,1.)=
(0,sin3 Icos d),—sm squ) in low fields, i.e., below a
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Fig. 4. Orientation of the magnetic sublattices in the external field
parallel to the b-axis.

threshold field of the spin-reorientation (spin—flop)
transition, is determined by the set of equations

(MyH)* |K. cosg +d, sinq

2 2

. 0 d 0
Z[KZCOSH—d+S1n0]2- (A+K.)cos=+ 1?02 _B]’

2 sin3
(16)

. MyH cos$

= : . 17
sin ¢ K.cos0+d, sin0 (17)

Above the threshold field, i.e., in the state ¢ = m/2
(m||b), the angle 0 is calculated from

0 dycosO

MH = (4 — K, - —
0 ( e ) sin§
The threshold field, above which this state is stable, is
determined from Eq. (16) with the critical value of the

angle 6 given by:

_B. (18)

0 , 0 . 0 0
<A + K. —dzcotz) cos 57 (B —dy s1n2> cosE—Kz

—d; sinf=0 (19)

As in the case H||a the antiferromagnetic modes cannot
be separated. The resonance frequencies are determined
by

iw D1 2 D] 3 0
D21 i 0 D24
D31 0 1w D34

0 D42 D43 1w

=0, (20)

Here the elements of the matrix in Eq. (20) are given by

Dy =MyH,+K,(m,+oyl,+asl,)+d (I, +oym, +osm,),
Diy=K.(m.—o L. +opl,) —d (I, —oym,—oym.),

Dy =—dyI.—K.m,—MyH,,

Dyy=—dm.—K.l,,

Dy =(K,—K.)m.+d, 1,

Dy =(K.—K.) [.+dom,,

Dip=(A+K)l, =B (m.L+m, 1))+ K. (m,+ 1. (o0 =3))

+dy[m, (2405 +03) —o31, ] —onda [+ (03 — 02 )m, ],

m;
Dy3= —Alz+Bﬁ(mzlz+myly)+Kz(lz(1 +o7 +03) +0am,)
—dz[(z—i-af+OC§)my—O(le]+OC1d1 [ly+(062 —063)11’12],

with the parameters o3 defined as

m.m, — I.1, my — I
U = —F———; O =—F———]
myl, —m.l, myl, —m.l,
2 2
_ lz —m .
o3 = )
myl. —m.l,

These equations remain valid above the spin—flop tran-
sition as well, with the angle 6 obtained from Eq. (18)
and with ¢ = n/2. Eq. (20) finally leads to the solution
for resonance frequencies

M 2
(«,0“’”) = E++/E* + 0, with (21)

1
E= 3 (D24Dy> + DuDy3 + D12Dsy + D31 Dy3),  and

O = D3D31D43Dy4 + D13D21D34Dyy — D12D2 D34 Dy3
— D13D31D4Dy5.

Above the spin—flop transition field the modes become
uncoupled and their frequencies read —(% wp)’ =
Dy D5 and —(Mwap)? = DDy, similar to the case
Hlc. ’

2.4. Discussion

To understand the physics of the problem, it is
instructive to consider a limiting case of small cant-
ing angles. Assuming (B,d)2,Ky,K.,MyH) < 4, the
approximate solution for the magnetization can be
written as:

Mx = MOm.x = XLHX(B + dl)/d17 ﬁ = (H)” 07 0)7 (22)

M, = Mom, = yroiHy, H= (0,H,,0), (23)

M. = Mom, =M° + 5 H., H=(0,0,H.). (24)

where M? = M, = My(B +d,)/(4 + K.) is the spontane-
ous magnetic moment along the c-axis, y, =
Mg/(A + KZ) and Xrot = Mrz/(KZ + 2d+MS/M0) ~ MvZ/KZ
are the transverse and rotational susceptibilities,
respectively.

Within the same approximations the frequencies of
the AFMR modes for H||c read:

My \°  (My ,\
( '))O CUF) = (7(]@(1):) + (dl + 2d+)M0HZ —+ (M()HZ)Z,

(25)

M, P IM, :
( '))O(UAF> = <70(UOAF) +d1M0Hza (26)

where w}. ,p are the frequencies at H = 0



A.A. Mukhin et al. | Journal of Magnetic Resonance 170 (2004) 814

T=5K

My ,\° d
())Owg) = AK. —" (27)

B+d,

M 2
(7‘)@0”) = AK, + d\(dy + B) ~ AK,. (28)

The analysis of Eq. (24) shows that the z-axis exhibits
weak ferromagnetism because the magnetization is non-
zero in the absence of an external magnetic field. The
magnetization along the y-axis (Eq. (23)) is determined by
the small rotational susceptibility and disappears in the
pure antiferromagnetic case (B = d; = 0). The low-field
susceptibility along the x-direction (Eq. (22)) is enhanced
compared to the susceptibility along the z-axis by the
factor (B + d))/d;. Qualitatively similar behavior of the
magnetization is observed in Fig. 5 [14]. The solid lines in
Fig. 5 were calculated using the field dependence of the
magnetization angles Egs. (9), (12), (13), (16), and (17)
and describe the experimental data reasonably well. A
small static moment along the y-axis is possibly due to a
weak twinning of the sample. The absolute values of the
parameters of the model were obtained by simultaneously
fitting the magnetization curves and the values of the
AFMR frequencies without external magnetic field
(v = 5.8cm™!, vap = 13.8cm™!). Despite the relatively
large number of parameters in Eq. (1) (4, B,d 2, Ky, Kz),
the requirement of a simultaneous fit of magnetization
and resonance frequencies leads to an unambiguous de-
termination of the parameters: 4 = 4.67 x 107 erg/g, B =
7.4 x 10%erg/g, K. =3.33 x 10%erg/g, K, =3.42 x
10%erg/g, di = 2.1 x 10°erg/g, and My = 92.14emu/g. In
these calculations we adopted that d, =~ —d;. These
parameters correspond to the average canting angle
180° — 0 = 22°.

The presented two-sublattice model for manganites
has been successfully applied to the doping dependence

‘LaO;QSS II‘O.OSIYI n(?S 4.2 K'

30 :
) Bllc(z)
g 20} .
L
C
S
T Blla(x)
= 10t .
< Bllb(y)
©
S

O " 1 1 " " 1

0 6

3
Magnetic field (T)

Fig. 5. Magnetization of La 9551 0sMnOj5 single crystal along different
crystallographic axes at 7 = 4.2K [14]. Symbols represent the experi-
mental data, lines are calculated according to the presented model.

LaO.QSSrO.USMnO3

—_
(&)}

s
et

-
o

(6]

AFMR frequency (cm™)

RBIb .
0 4 8 0 4 8 0 4 8
Field (T)

Fig. 6. Magnetic field dependence of the AFMR frequencies in
LagosSroosMnO;3 at low temperatures. Points, experiment [14]; lines,
model calculations.

of the AFMR-modes in La; _ ,Sr,MnOj; [13], and to the
magnetic-field dependence of the resonances in untwin-
ned LaggsSrgosMnO3 [14]. The magnetic field depen-
dencies of the resonance frequencies of both AFMR
lines are shown in Fig. 6. The solid lines in Fig. 6 were
calculated on the basis of the model discussed above.
However, the parameters of the model were already
fixed by fitting the magnetization curves and absolute
values of the AFMR frequencies in the absence of
magnetic field. Having this in mind, the theoretical
curves describe the experimental data reasonably well.
The most important feature of Fig. 6 is the softening of
the FM-mode for B|b. This softening represents a
common property of magnetic resonance in antiferro-
magnets and is followed by the field-induced rear-
rangement of the magnetic structure (spin—flop) at a
critical value of magnetic field. The softening of the FM-
mode at low fields is in good agreement with the model
calculations. The behavior for higher fields (B~7T)
deviates significantly from the model predictions. These
deviations are most probably due to the extreme sensi-
tivity of the data with respect to the exact orientation of
the static magnetic field and the neglect of the higher-
order terms in Eq. (1). The angular dependence of a
critical behavior in a canted antiferromagnet has been
calculated in details by Hagedorn and Gyorgy [15].
These calculations show that already a misalignment of
the magnetic field as low as one degree strongly suppress
the softening of the FM-line in the vicinity of the critical
field. Most probably, similar effects explain the devia-
tions observed in Fig. 6. In addition, we note that the
AFMR modes obey the excitation conditions as de-
scribed discussing Fig. 2.

3. Conclusions

Two-sublattice model, which includes the double-ex-
change mechanism, have been applied to a canted
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magnetic structure. The static magnetization and the
AFMR resonance frequencies have been calculated for
external magnetic field along the principal crystallo-
graphic axes. As a working example, the magnetization,
positions and excitation conditions of the AFMR modes
in Lagg5Srg0sMnQOj; single crystal have been calculated
and compared to the experimental data.

Acknowledgments

This work was supported in part by BMBF
(13N6917/A—EKM), by DFG (SFB 484), and by RFBR
(03-02-16759).

References

[1] K. Chahara, T. Ohno, M. Kasai, Y. Kozono, Magnetoresistance
in magnetic manganese oxide with intrinsic antiferromagnetic spin
structure, Appl. Phys. Lett. 63 (1993) 1990-1992;

R. von Helmolt, J. Wecker, B. Holzapfel, L. Schulz, K. Samwer,
Giant negative magnetoresistance in perovskitelike
La,/3Ba;;3sMnO, ferromagnetic films, Phys. Rev. Lett. 71 (1993)
2331-2333;

S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh,
L.H. Chen, Thousandfold change in resistivity in magnetoresistive
La-Ca-Mn-O films, Science 264 (1994) 413-415.

[2] M. Paraskevopoulos, F. Mayr, J. Hemberger, A. Loidl, R.
Heichele, D. Maurer, V. Miiller, A.A. Mukhin, A.M. Balbashov,
Magnetic properties and the phase diagram of La, _,Sr,MnO; for
x<0.2, J. Phys.: Condens. Matter 12 (2000) 3993-4011.

[3] E.L. Nagaev, Lanthanum manganites and other giant-magneto-
resistance magnetic conductors, Sov. Phys.-Uspekhi 39 (1996)
781-805;

E. Dagotto, T. Hotta, A. Moreo, Colossal magnetoresistant
materials: the key role of phase separation, Phys. Rep. 344 (2001)
1-153;

M.Yu. Kagan, K.I. Kugel’, Inhomogeneous charge distributions
and phase separation in manganites, Phys.-Uspekhi 44 (2001)
553-570.

[4] P.-G. de Gennes, Effects of double exchange in magnetic crystals,
Phys. Rev. 118 (1960) 141-154.

[5] D. Ivannikov, M. Biberacher, H.-A. Krugvon Nidda, A. Pimenov,
A. Loidl, A.A. Mukhin, A.M. Balbashov, High-field ESR on the

spin dynamics in La;_,Sr,MnO; (x<0.175), Phys. Rev. B 65
(2002) 214422.

[6] M. Hennion, F. Moussa, G. Biotteau, J. Rodriguez-Carvajal, L.

Pinsard, A. Revcolevschi, Evidence of anisotropic magnetic
polarons in LaggsSr0sMnO; by neutron scattering and compar-
ison with Ca-doped manganites, Phys. Rev. B 61 (2000) 9513—
9522;
G. Biotteau, M. Hennion, F. Moussa, J. Rodriguez-Carvajal, L.
Pinsard, A. Revcolevschi, Y.M. Mukovskii, D. Shulyatev,
Approach to the metal-insulator transition in La;_,Ca,MnOj;
(0<x<0.2): Magnetic inhomogeneity and spin-wave anomaly,
Phys. Rev. B 64 (2001) 104421.

[7] T. Morya, Weak ferromagnetism, in: G.T. Rado, H. Suhl (Eds.),
Magnetism, vol. I, Academic Press, New York, 1984.

[8] I. Dzyaloshinsky, A thermodynamic theory of weak ferromagne-
tism of antiferromagnetics, J. Phys. Chem. Sol. 4 (1958) 241-255.

[9] C. Zener, Interaction between the d-shells in the transition metals.
II. Ferromagnetic compounds of manganese with perovskite
structure, Phys. Rev. 82 (1951) 403-405.

[10] J. Deisenhofer, M.V. Eremin, D.V. Zakharov, V.A. Ivanshin,
R.M. Eremina, H.-A. Krug von Nidda, A.A. Mukhin, M.
Balbashov, A. Loidl, Crystal field, Dzyaloshinsky—Moriya inter-
action, and orbital order in LaggsSroosMnO; probed by ESR,
Phys. Rev. B 65 (2002) 104440; cond-mat/0108515 (unpublished).

[11] L.E. Gonchar, A.E. Nikiforov, S.E. Popov, Interplay between

orbital, charge and magnetic orderings in R;_,A.MnO;
(x=10,0.5), J. Magn. Magn. Mater. 223 (2001) 175-191;
L.E. Gonchar, A.E. Nikiforov, S.E. Popov, Antiferromagnetic
resonance spectrum in LaMnOs: interrelation of the orbital
structure and the magnetic properties, J. Exp. Theor. Phys. 91
(2000) 1221-1229.

[12] G.F. Herrmann, Resonance and high frequency susceptibility in
canted antiferromagnetic substances, J. Phys. Chem. Sol. 24
(1963) 597-606;

G.F. Herrmann, Magnetic resonances and susceptibility in
orthoferrites, Phys. Rev. 133 (1964) A1334-A1344.

[13] A.A. Mukhin, V.Yu. Ivanov, V.D. Travkin, A. Pimenov, A.
Loidl, A.M. Balbashov, Antiferromagnetic resonance in the
canted phase of La;_,Sr,MnOs: experimental evidence against
electronic phase separation, Europhys. Lett. 49 (2000) 514-520.

[14] A. Pimenov, M. Biberacher, D. Ivannikov, A. Loidl, V.Yu.
Ivanov, A.A. Mukhin, A.M. Balbashov, High-field antiferromag-
netic resonance in single-crystalline Lag sSry9sMnO;: experimen-
tal evidence for the existence of a canted magnetic structure, Phys.
Rev. B 62 (2000) 5685-5689.

[15] F.B. Hagedorn, E.M. Gyorgy, Complex susceptibility and reso-
nance frequencies of canted antiferromagnets, Phys. Rev. 174
(1968) 540-545.



	Antiferromagnetic resonances and magnetization of a canted antiferromagnet
	Introduction
	Model of a canted structure
	External magnetic field along the c-axis
	External magnetic field along the a-axis
	External magnetic field along the b-axis
	Discussion

	Conclusions
	Acknowledgements
	References


